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Calculation of the distribution of the average value of a Gaussian random field in a finite domain is carried
out for different cases. The results of the calculation demonstrate a strong dependence of the width of the
distribution on the spatial correlations of the field. Comparison to the simulation results for the distribution of
the size of the cluster indicates that the distribution of an average field could serve as a useful tool for the
estimation of the asymptotic behavior of the distribution of the size of the clusters for “deep” clusters where
value of the field on each site is much greater than the rms disorder.
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I. INTRODUCTION

A common feature of any random medium is the forma-
tion of clusters. Probably, the most well-known problem
where statistics of clusters has been extensively studied is the
famous percolation problem �1�. In the lattice percolation
model any site is occupied with the probability p and non-
occupied with the probability 1− p, and each cluster is a set
of connected occupied sites. An important characteristic of
the random medium is distribution of the size of the clusters
or, more exactly, the number of clusters with s sites per lat-
tice site, ns. Knowledge of the statistics of random clusters is
vital for the description of many important natural phenom-
ena, such as the conductivity of disordered materials, the
flow of liquids in porous media, the fracture processes in
materials, or even the dynamics of landscapes and forest fires
�2–6�. Exact or reliable approximate analytic results for ns
are not very numerous. Possible examples include the num-
ber of percolation clusters for s�1 and p→0,

ns � s−�ps, �1�

or the corresponding distribution near the percolation
threshold pc,

ns � s−� exp�− C�p − pc��s��, p → pc, s � 1. �2�

Here �, �, C, �, and � are some constants �7–9�. Most results
in this area were obtained using scaling arguments with sub-
sequent testing of their validity with extensive computer
simulation �8,10,11�. The reason for the scarcity of analytical
results is obvious: it is difficult to take into account various
shapes of clusters. In addition, most known results for ns are
obtained for the uncorrelated case, i.e., the case when lattice
sites are occupied independently of each other.

Cluster numbers for the case, where sites are occupied not
independently, have been studied for the problem of corre-
lated percolation �12–16�. Correlation is usually introduced
by the short-range interaction between different sites �most
popular cases are the Ising model �17,18� and the q-states

Potts model �19,20��. Attention in this area was almost ex-
clusively focused on the behavior in the vicinity of the per-
colation threshold.

In this paper we are going to consider the statistics of ns
for another case of correlated random distributions, namely,
for a Gaussian random field U�r�� �we will call U�r�� the ran-
dom energy for reasons that will be obvious later�, where the
cluster may be defined as a connected set of sites, all of them
having an energy greater than the threshold value U0�0; for
a Gaussian random field this is equivalent to the cluster with
sites, having the energy less than −U0. Percolation properties
of Gaussian random fields have been studied previously
�21–23�. In this paper we are going to consider the distribu-
tion of “deep” clusters with U0�	 �where 	 is the rms dis-
order and where we assume zero average for U�, i.e., the
situation far away from the percolation threshold. Most at-
tention will be paid to the particular kind of a Gaussian ran-
dom field having binary correlation function

C�r�� = �U�r��U�0�� � A	2a

r
, r � a, 	2 = �U2�r��� , �3�

where the angular brackets denote a statistical averaging and
a is the lattice scale. This particular correlation function
naturally arises in the model of dipolar glass �DG� �24,25�,
which is popular for the description of the charge transport
properties of organic materials. In the simplest realization of
the DG model we assume a random and independent orien-
tation of dipoles occupying sites of a regular lattice, while
charge carriers interact with dipoles by the long-range
charge-dipole interaction. In this model the energy of a
charge carrier is

U�r�� = e	
n

d�n · �r� − r�n�

�r� − r�n�3

, �4�

where d is the dipole moment of the molecule and 
 is the
dielectric constant. Using an exact analytic calculation as
well as computer simulations it was shown that for the DG
model random energy U�r�� is a Gaussian random field if the
average distance between dipoles is not significantly greater*novikov@elchem.ac.ru
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than the lattice scale �26–28�. The correlation function of the
DG has the form �3� and in the case of a simple-cubic lattice
A�0.76 �29�. This model was suggested to explain the
Poole-Frenkel dependence of the carrier drift mobility � in
polar disordered organic materials on the applied electric
field E over a broad range of field strengths

ln � � 
E �5�

�25,30–32�. A power-law decay of the correlation function
�3� means an extremely long-range correlation in the random
energy landscape in organic materials. For this reason clus-
ters have wide size distribution �see Fig. 1�.

In this paper we show how to calculate analytically an-
other characteristic of the correlated medium, namely, the
distribution of the average random energy in a domain. An
attractive feature of this distribution is that it is much more
easy to calculate. We argue, then, that this distribution pro-
vides valuable information about the cluster numbers for
large clusters and U0 /	�1 that is in the region far away
from the percolation threshold. Our consideration will be
limited to the three-dimensional �3D� case, though generali-
zation to other dimensions is obvious.

II. DISTRIBUTION OF AN AVERAGE VALUE
OF THE RANDOM FIELD IN A DOMAIN

Let us calculate the distribution PV�U0� of the average
value U0 of the random energy U�r�� in a domain with vol-
ume V �here we consider a spatial average and use the same
notation U0 for the average energy�. Let us start with a con-
tinuous model of the medium, which is valid for s�1. In this
model the distribution PV�U0� is the average of the delta
function

PV�U0� = ��� 1

V
 dr�U�r��fV�r�� − U0�� , �6�

where fV�r�� equals 1 inside the domain and 0 outside and
may be presented as a path integral over all realizations of
the scalar field U�r��,

PV�U0� =
1

Z
 DU�� 1

V
 dr�U�r��fV�r�� − U0�e−S,

Z = DUe−S, S =
1

2
 dr�dr�1U�r��G�r� − r�1�U�r�1� . �7�

Here the kernel G�r�� obeys the equation

 dr�2G�r� − r�2�C�r�2 − r�1� = ��r� − r�1� . �8�

To perform the actual integration we use the following
presentation of the delta function:

��x� =
1

2�
 dyeiyx, �9�

and then the Gaussian structure of the action S allows us to
calculate the integral �8�,

PV�U0� =
V


2�K
exp�−

U0
2V2

2K
� ,

K = dr�dr�1fV�r��C�r� − r�1�fV�r�1� . �10�

This exact result is valid for any Gaussian field U. By defi-
nition, C�0�= �U2� and in a typical case C�r��=	2f�r��. Hence,
K�	2 and for this reason we introduce a new parameter ,

K = 	2, �11�

which depends only on the spatial decay of C�r��. In future
we will omit the factor 	2 in C�r��. Using the Fourier trans-
forms of C�r�� and fV�r�� we obtain

 =
1

�2��3 dk� fV�k��C�k��fV�− k�� , �12�

and for a spherical domain with radius R0,

fV�k�� =
4�

k3 �sin kR0 − kR0 cos kR0� . �13�

A. Noncorrelated field

Let us analyze Eq. �10� for some particular cases. If U�r��
is a field without spatial correlations, then

C�r�� = a3��r�� �14�

and

FIG. 1. Distribution of site energies U in the lattice model of
dipolar glass. A sample with the size of 50�50�50 lattice sites is
shown. Black and white spheres represent the sites with positive
and negative values of U, correspondingly, while the radius of a
sphere is proportional to the absolute value of U. Sites with small
absolute values of �U� �less than 	� are not shown for the sake of
clarity.
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 = a3V, PV�U0� = � V

2�	2a3�1/2

exp�−
U0

2V

2	2a3� . �15�

Note, that in this particular case PV�U0� depends only on the
volume V of the domain and not on its shape, as it should be
for a totally noncorrelated field distribution. Note also that
V /a3 is actually the number s of lattice sites in the domain,
so the leading asymptotics for s�1 is

ln Ps � − s . �16�

The noncorrelated Gaussian random energy is the base of
the famous Gaussian disorder model, developed by Bässler
�33� for the description of charge-carrier transport in disor-
dered organic materials. The correlated model �24,25� could
be considered as a natural extension of the Bässler’s model
in order to explain the experimental mobility field depen-
dence Eq. �5�.

B. Dipolarlike field in a spherical domain

Now let us discuss the most interesting case of the dipo-
larlike correlated field C�r���a /r. In this case  depends not
only on the total volume of the domain, but also on its ge-
ometry. Using the Fourier transforms of C�r��,

C�k�� =
4�Aa

k2 , �17�

we obtain for a spherical domain

 =
32�2

15
AaR0

5. �18�

This result demonstrates a tremendous difference with the
noncorrelated case, described by Eq. �15�, because in the
leading asymptotics ln PV�−R0, i.e., it is proportional to the
linear size of the domain and not to its volume. The com-
parison between the analytic result �18� and the simulation
data is shown in Figs. 2 and 3. Statistics for all figures have

been gathered for a basic sample with a size of 256�256
�256 lattice sites with periodic boundary conditions and
10 000 realizations of the random field U �apart from Fig. 2,
where 1000 realizations of the random field were used�. Par-
ticular distributions of U�r�� have been generated in the usual
way. There is no correlation among the fluctuations in mo-
mentum space U�k�� for different k�, so we generated distribu-
tions of U�k�� and then calculated Fourier transform to get
U�r��.

If a domain has an arbitrary shape but still could be char-
acterized by a single linear scale R0, then

 � R0
5 �19�

just because of dimensionality argument, though the coeffi-
cient of proportionality depends on the actual shape of the
domain. One can rewrite the relation �19� in the following
form:

 = gAaV5/3, �20�

where the coefficient g depends on the shape of the domain
and for a sphere g0=2�36��1/3 /5. The calculation of the co-
efficient g for a more general case of elliptic domains is
presented in the Appendix. This calculation shows that g
attains a maximum g=g0 for a spherical shape and is signifi-
cantly smaller than g0 only for very elongated or oblate el-
lipsoids.

III. ESTIMATION FOR CLUSTER NUMBERS

The number of spherical domains nV�U0� per unit volume,
having an average energy greater than U0, is approximately
equal to

nV�U0� �
1

V


U0

�

dUPV�U� =
1

2V
erfc� U0V

	
2
� . �21�
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FIG. 2. Comparison between simulation data �+,�� and analytic
results �10� and �18� for the dipolar glass with R0=5a �+� and R0

=10a ���, respectively. Note that there are no adjustable parameters
in this plot.
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FIG. 3. Dependence of  on R0 for a dipolar glass. The slope of
the straight line equals to 0.95. According to Eq. �18�, it should be
equal to 0.91. The reason for a nonzero intercept is the finite size of
the basic cell.
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here the coefficient 1 /V reflects the number of nonoverlap-
ping independent domains in any finite sample. If U0�	,
then

nV�U0� �
	
2

U0V2
�
exp�−

U0
2V2

2	2� . �22�

We may expect that Eq. �22� gives a reasonable estimation
for the number ns of the true clusters, i.e., domains, where
U�r���U0 everywhere �assuming V=a3s�, at least for the
leading term of the asymptotic dependence of ns on s �the
very use of the continuous model of the random medium
suggests that our consideration is valid only for s�1�. In
addition, because we consider the distribution of the average
field in the most compact domain �a sphere�, this estimation
could be valid only for clusters far away from the percolation
threshold �this is equivalent to U0�	�. At the percolation
threshold clusters typically have a fractal-like structure �8�. If
this assumption is true, then for the noncorrelated Gaussian
field

ns �
	

U0s3/2exp�− Bnc

U0
2

	2 s� , �23�

and for the dipolarlike Gaussian field

ns �
	

U0s7/6exp�− Bd

U0
2

	2 s1/3� , �24�

where we take into account the possibility that for true clus-
ters the coefficients Bnc and Bd might differ from the corre-
sponding values Bnc

0 and Bd
0, estimated from Eqs. �15� and

�18� for spherical domains

Bnc
0 =

1

2
, �25�

Bd
0 =

5

4A�36��1/3 = 0.34 . . . . �26�

One can reasonably assume that Bd does not differ signifi-
cantly from Bd

0 because the spherical domains are the most
probable ones �see Appendix�. We compared Eqs. �23� and
�24� to the simulation data and found that they provide good
approximations for the true cluster numbers �see Figs. 4 and
5�.

In order to understand the true status of Eqs. �23�–�26�, let
us compare the result for the noncorrelated field to Eq. �1�,
which is an exact result for the noncorrelated percolation.
The noncorrelated Gaussian field problem is exactly equiva-
lent to the classic percolation problem �1� with

p =
1

2
erfc� U0

	
2
� �

	
2

U0

�

exp�−
U0

2

2	2�, U0/	 � 1.

�27�

Comparing Eqs. �1�, �23�, and �27� we see that our simple
estimation �23� provides at least the right leading asymptot-
ics for ns,

ln ns = −
U0

2

2	2s + o�U0
2

	2 s�,
U0

2

	2 s � 1, �28�

�note that Bnc=Bnc
0 =1 /2� so both the functional kind of the

asymptotic dependence of ns on s and the coefficient of pro-
portionality are true for the noncorrelated field. In fact, even
the small difference between 1/2 and the corresponding fit-
ting coefficient in Fig. 4 could be perfectly well explained by
the contribution of higher order terms in Eq. �28� for U0 /	
�2−3. If we fit only the data for sufficiently large values of
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FIG. 4. Cluster numbers ns for a noncorrelated Gaussian field.
Threshold energy U0 /	 varies from 2.0 to 3.5 �with the step 0.25�
from the topmost curve downwards and the lines are provided as
guides for the eyes �inset�. In proper coordinates all curves approxi-
mately collapse to a uniform straight line with the slope −0.47.
According to Eq. �15�, the slope should be equal to −1 /2.
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FIG. 5. Cluster numbers ns for the dipolarlike Gaussian field.
Threshold energy U0 /	 varies from 2.75 to 4.0 �with the step 0.25�
from the topmost curve downwards, and the lines are provided as
guides for the eyes �inset�. Again, as in Fig. 4, in proper coordinates
all curves approximately collapse to the uniform straight line with
the slope −0.31. According to Eq. �18�, the slope should be equal to
−0.34.

S. V. NOVIKOV AND M. VAN DER AUWERAER PHYSICAL REVIEW E 79, 041139 �2009�

041139-4



the threshold energy, then the slope becomes even more
close to −1 /2.

If we consider the case of a dipolarlike field, then again
the fit of the true simulated ns to Eq. �24� gives Bd�0.31
which is very close to Bd

0�0.34. Again, if we try to fit only
data points for U0 /	�3.5–4, then the agreement between
Bd and Bd

0 becomes better. We would like to put forward the
hypothesis that for the DG model the asymptotic expansion

ln ns = − Bd
0U0

2

	2 s1/3 + o�U0
2

	2 s1/3�,
U0

2

	2 s1/3 � 1 �29�

is valid too. If so, we may suggest that the corresponding
asymptotics for ns and s�1, U0�	 is valid for any Gauss-
ian field with  calculated by Eq. �12� for a spherical do-
main. This strong hypothesis certainly should be tested more
thoroughly, but, nonetheless, our simulation data provide im-
portant arguments in its favor. Another interesting question is
how valid are power-law corrections to the leading expo-
nents in Eqs. �23� and �24�. For the noncorrelated percolation
in Eq. �1� in the 3D case the exact result is �=3 /2 �7� and
agrees with Eq. �23�, though this agreement, quite possibly,
is an accident.

If we consider Eq. �28�, it is obvious that it is universal
and does not depend on the particular structure of the lattice.
This is not so, seemingly, for Eq. �29�, where the coefficient
Bd

0 depends on parameter A, which, in turn, is different for
different lattices �the particular value A�0.76 is valid only
for a simple-cubic lattice �29��. At the same time, we cannot
expect this kind of dependence for s�1, where the particular
structure of the lattice should be unimportant. This seeming
contradiction could be resolved if we recall that for the DG
model the parameter 	2 depends on the lattice too. In fact,
the combination A	2a is invariant

A	2a =
4�e2d2c

3
2 , �30�

where c is the concentration of dipoles �29�. Clearly, in such
a case the correlation function �3� does not depend on any
microscopic characteristic of the random dipolar medium,
while the combination Bd

0 /	2 depends only on the lattice
scale a and not on the particular structure of the lattice.

It was found previously that in the correlating percolation
problem many features of the percolation near the percola-
tion threshold are not, in fact, very sensitive to the correla-
tion. For example, in some cases the percolation threshold is
the same for correlated and noncorrelated problems �14� and
cluster numbers sometimes are the same as well �34�. From
this point of view it is very interesting that the asymptotic
behavior of ns for deep clusters differs significantly for cor-
related and noncorrelated Gaussian fields.

IV. CONCLUSION

In this paper we discussed the distribution of an average
value in a finite domain for different Gaussian random fields.
We found that for very different types of Gaussian fields �in
terms of their spatial correlation properties� the distribution
of the average energy could serve as a good estimation for

the true cluster numbers per lattice site for large “deep” clus-
ters, where s�1 and the threshold energy U0 is significantly
greater than the rms disorder 	. Comparison of the analytical
results for PV�U0�, calculated for a spherical domain, and
computer simulation data for ns supports the hypothesis that
PV�U0� provides the exact leading asymptotic term for ns. In
our consideration we discussed particular Gaussian fields,
relevant to the description of charge-carrier transport in dis-
ordered organic materials. Nonetheless, the suggested ap-
proach could be used for other random Gaussian fields as
well. Generalization to other spatial dimensions �beyond 3D�
is also possible.
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APPENDIX: DIPOLARLIKE FIELD
IN AN ELLIPSOIDAL DOMAIN

Let us consider domains of a nonspherical shape in order
to estimate the influence of the domain shape on the prob-
ability to have a particular value of U0 in such domain. The
simplest choice is to study the distribution of the field in
ellipsoidal domains with half-axes b1R0, b2R0, and b3R0,
where bi are scale coefficients. A direct calculation shows
that for ellipsoidal domains

 = e =
b1b2b3

�2��3  dk� fV0
�k��Ce�k��fV0

�− k�� ,

Ce�k�� =
4�Aa

	i=1

3
ki

2/bi
2

. �A1�
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FIG. 6. Coefficient ge��� for the ellipsoidal domains; g0

=2�36��1/3 /5 is the corresponding coefficient for a sphere. Broken
lines correspond to approximations �A5� and �A6�.
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Here the function fV0
�k�� is exactly the same one as the cor-

responding function for spherical domains and V0=4�R0
3 /3.

For this reason

e =
1

2
0b1b2b3I ,

I = b1b2
−1

1 dx

��1 + x2� b1
2

b3
2 − 1���1 + x2� b2

2

b3
2 − 1���1/2 .

�A2�

Here 0 is the corresponding value for a sphere. Let us cal-
culate this integral for ellipsoidal domains having rotational
symmetry with b1=b2. In this case

I = b1
2

−1

1 dx

1 + ��2 − 1�x2

=
2b1

2


��2 − 1��arctg
�2 − 1, � � 1
1
2 ln1+
1−�2

1−
1−�2 , � � 1,� �A3�

where �=b1 /b3. Taking into account that the volume of the
ellipsoidal domain is equal to V=b1b2b3V0, we obtain

ge���
g0

=
�2/3


��2 − 1��arctg
�2 − 1, � � 1
1
2 ln1+
1−�2

1−
1−�2 , � � 1,� �A4�

and in the limiting cases

ge���
g0

� �2/3 ln
2

�
,� � 1, �A5�

ge���
g0

�
�

2�1/3 ,� � 1. �A6�

Equations �A5� and �A6� mean that domains which differ
significantly from the spherical ones have much smaller
probability to occur �for the same values of U0 and V�. The
general behavior of ge��� is shown in Fig. 6.
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